Below follows a selected list of my peer-reviewed publications. My publications may also be retrieved via Google Scholar, ORCID, and the NASA Astrophysics Database System (ADS).


  1. Exploration of the high-redshift universe enabled by THESEUS.
    N.R. Tanvir, E. Le Floc’h, L. Christensen, J. Caruana, R. Salvaterra, G. Ghirlanda, B. Ciardi, et al. 2021, Experimental Astronomy (submitted:
  2. Synergies of THESEUS with the large facilities of the ’30s and GO opportunities.
    P. Rosati et al., 2021, Experimental Astronomy (submitted:
  3. The relative efficiencies of bars and clumps in driving disc stars to retrograde motion.
    K. Fiteni, J. Caruana , J.A.S. Amarante, V.P. Debattista, L. Beraldo e Silva 2021, MNRAS, 503, 1418-1430.
  4. A photometric mapping of the night sky brightness of the Maltese Islands.
    J. Caruana et al., 2020, JEMA, 261, 110196.
  5. The Formation of Compact Elliptical Galaxies in the Vicinity of a Massive Galaxy: The Role of Ram-Pressure Confinement.
    M. Du et al., 2019, ApJ, 875, 58.
  6. The MUSE-Wide Survey: Survey Description and First Data Release.
    T. Urrutia et al., 2019, A&A, 624, A141.
  7. THESEUS: a key space mission concept for Multi-Messenger Astrophysics.
    G. Stratta et al., 2018, Advances in Space Research, 62, 662-682.
  8. Recovering the systemic redshift of galaxies from their Lyman-alpha profile.
    A. Verhamme et al., 2018, MNRAS, 478, L60-L65.
  9. The THESEUS space mission concept: science case, design and expected performances.
    L. Amati et al., 2018, Advances in Space Research, 62, 191.
  10. Kinematics, Turbulence and Star Formation of z ~ 1 Strongly Lensed Galaxies seen with MUSE
    V. Patricio et al., 2018, MNRAS, 477, 18.
  11. Dark Galaxy Candidates at Redshift ~3.5 Detected with MUSE
    R.A. Marino et al., 2018, ApJ, 859, 53.
  12. The MUSE-Wide survey: A measurement of the Lyα emitting fraction among z>3 galaxies.
    J. Caruana et al., 2018, MNRAS, 473, 30-37.
  13. The MUSE Hubble Ultra Deep Field Survey X: Lyα Equivalent Widths at 2.91 < z < 6.64.
    T. Hashimoto et al., 2018, A&A, 608, A10.
  14. The MUSE Hubble Ultra Deep Field Survey VI: The Faint-End of the Lyα Luminosity function at 2.91 < z < 6.64 and Implications for Reionization.
    A.B. Drake et al., 2017, A&A, 608, A6
  15. The MUSE-Wide Survey: A first catalogue of 831 emission line galaxies.
    E.C. Herenz et al. 2017, A&A, 606, A12.
  16. Ubiquitous giant Lyman alpha nebulae around the brightest quasars at z~3.5 revealed with MUSE.
    E. Borisova et al. 2016, The Astrophysical Journal, 831, 39.
  17. Extended Lyman alpha haloes around individual high-redshift galaxies revealed by MUSE.
    L. Wisotzki et al 2016, Astronomy & Astrophysics, 587, 98.
  18. Quantifying the UV continuum slopes of galaxies to z~10 using deep Hubble and Spitzer/IRAC observations.
    S. Wilkins, R.J. Bouwens, P.A. Oesch, I. Labbe, M. Sargent, J. Caruana, J. Wardlow, S. Clay 2016, MNRAS, 455, 659.
  19. The Lyman-Continuum Photon Production Efficiency xi_{ion} of z~4-5 Galaxies from IRAC-based Halpha Measurements: Implications for the Escape Fraction and Cosmic Reionization.
    R.J. Bouwens, R. Smit, I. Labbe, M. Franx, J. Caruana, P. Oesch, M. Stefanon, N. Rasappu 2016, The Astrophysical Journal, 831, 176.
  20. Cosmic Reionization after Planck: The Derived Growth of the Ionizing Background now matches the Growth of the Galaxy UV Luminosity Density.
    R.J. Bouwens, G.D. Illingworth, P.A. Oesch, J. Caruana, B. Holwerda, R. Smit, S. Wilkins 2015, The Astrophysical Journal, 811, 140.
  21. A MUSE map of the central Orion Nebula (M 42).
    Weilbacher et al. 2015, Astronomy & Astrophysics, 581, 114.
  22. The MUSE 3D view of the Hubble Deep Field South.
    R. Bacon et al. 2015, Astronomy & Astrophysics, 575, 75.
  23. Spectroscopy of galaxies in the early universe.
    J. Caruana, Astronomy & Geophysics, Volume 56, Issue 3, 44-46.
  24. MUSE Commissioning
    R. Bacon et al. 2014, The Messenger, 157, 13-16.
  25. Spectroscopy of z ~ 7 candidate galaxies: Using Lyman-alpha to constrain the neutral fraction of hydrogen in the high-redshift universe.
    J. Caruana, A.J. Bunker, S. Wilkins, E. Stanway, S. Lorenzoni, M. Jarvis, H. Elbert 2014, MNRAS, 443, 2831.
  26. Theoretical predictions for the effect of nebular emission on the broadband photometry of high-redshift galaxies.
    S. M. Wilkins, W. Coulton, J. Caruana, R. Croft, T. Di Matteo, N. Khandai, Y. Feng, A.J. Bunker, H. Elbert 2013, MNRAS, 435, 2885.
  27. VLT/XSHOOTER & Subaru/MOIRCS Spectroscopy of HUDF-YD3: No Evidence for Lyman-α Emission at z = 8.55.
    A.J. Bunker, J. Caruana, S.M. Wilkins, E. R. Stanway, S. Lorenzoni, M. Lacy, M. J. Jarvis & S. Hickey 2013, MNRAS, 430, 3314.
  28. Constraining the bright-end of the UV luminosity function for z ≈ 7 − 9 galaxies: results from CANDELS/GOODS-South.
    S. Lorenzoni, A.J. Bunker, S.M. Wilkins, J. Caruana, E. R. Stanway, M. J. Jarvis 2013, MNRAS, 429, 150.
  29. Spectroscopy of z > 7 sources using GEMINI/GNIRS and VLT/XSHOOTER.
    J. Caruana, A.J. Bunker, S.M. Wilkins, E.R. Stanway & S. Lorenzoni 2012, MNRAS, 427, 3055.
  30. The UV Properties of Star Forming Galaxies I: HST WFC3 Observations of Very-high Redshift Galaxies.
    S. Wilkins, A. J. Bunker, E. Stanway, S. Lorenzoni, J. Caruana 2011, MNRAS, 417, 717-729.
  31. Star-forming galaxies at z≈8-9 from Hubble Space Telescope/WFC3: implications for reionization.
    S. Lorenzoni, A.J. Bunker, S. Wilkins, E. Stanway, M. Jarvis, J. Caruana 2011, MNRAS, 414, 1455.
  32. New star-forming galaxies at z ≈ 7 from Wide Field Camera Three imaging.
    S. M. Wilkins, A. J. Bunker, S. Lorenzoni, J. Caruana 2011, MNRAS, 411, 23-36.

hyperbaric medicine

  1. Increasing prevalence of vestibulo-cochlear decompression illness in Malta – an analysis of hyperbaric treatment data from 1987 – 2017.
    C. Azzopardi, J. Caruana, L. Matity, S. Muscat, W.A.J. Meintjes, accepted for publication in Diving and Hyperbaric Medicine.